
Information Coding / Computer Graphics, ISY, LiTH

TNM084!

Procedural images

Ingemar Ragnemalm, ISY

1(56)

1(56)

Information Coding / Computer Graphics, ISY, LiTH

Lecture 2
!

• Random numbers!
!

• Splines!
!

• Noise!
!

• Filtering noise!
!

• Perlin noise!
!

• Simplex noise

2(56)2(56)

Information Coding / Computer Graphics, ISY, LiTH

Random numbers
!

Important source of interesting patterns!
!

Randomness is chaos?!
!

Randomness with structure

3(56)3(56)

Information Coding / Computer Graphics, ISY, LiTH

What is random?

Pick a "random" number - never truly random!
!

People never pick the same number twice. Randomness
does!!
!

Roll a die!
!

Is the die fair?!
!

But how can we make a computer "roll a die"?

4(56)4(56)

Information Coding / Computer Graphics, ISY, LiTH

Pseudo-random numbers
!

Computers are intrinsically deterministic!
!

How can we make randomness?!
!

• Heat + A/D conversion!
!

• Pseudo-random number generation

5(56)5(56)

Information Coding / Computer Graphics, ISY, LiTH

Analog randomness
!

Noise in analog inputs are also random numbers!!
!

Input from noisy sensor, A/D-conversion.!
!

Drawback: The result is not repeatable and dependent of
momentary situation, like heat level.!

!
The system may stop working a cold day!

6(56)6(56)

Information Coding / Computer Graphics, ISY, LiTH

PRBS
!

Pseudo-random binary sequence!
!

Shift bits and do XOR with some bits!
!

Creates a chaotic sequence!
!

Eventually repeats itself

7(56)7(56)

Information Coding / Computer Graphics, ISY, LiTH

PRBS

Needs a "seed", a start value!
!

Needs to pick target bits, a "mask"!
!

Find ones that create long sequences!
!

Special cases with short sequence may occur

8(56)8(56)

Information Coding / Computer Graphics, ISY, LiTH

01000101

10010000
1 at end -> XOR with mask

106 53 82 41 92 46 23 67 105 124 62 31 71 107 125 118 59 85 98 49 80 40
20 10 5 74 37 90 45 94 47 95 103 123 117 114 57 84 42 21 66 33 88 44 22
11 77 110 55 83 97 120 60 30 15 79 111 127 119 115 113 112 56 28 14 7
75 109 126 63 87 99 121 116 58 29 70 35 89 100 50 25 68 34 17 64 32 16
8 4 2 1 72 36 18 9 76 38 19 65 104 52 26 13 78 39 91 101 122 61 86 43
93 102 51 81 96 48 24 12 6 3 73 108 54 27 69

PRBS, example

8 bits

Sequence of 254 numbers

9(56)9(56)

Information Coding / Computer Graphics, ISY, LiTH

Random library functions
!

Pseudo-random number functions are in most run-time libraries!
!

High quality random functions, long sequencies!
!

rand() and srand() in the standard libraries!
!

random() and srandom()!
!

Not cryptographically secure; irrelevant for us.

10(56)10(56)

Information Coding / Computer Graphics, ISY, LiTH

But...
!

The random number libraries are generally sequential!!
!

Not useable in a shader.!
!

Also questioable in the parallel image generation model.!
!

In shaders, we need another solution!

11(56)11(56)

Information Coding / Computer Graphics, ISY, LiTH

Random numbers in GLSL

GLSL runs on the GPU!
!

Built-in random functions never worked (!)!
!

Typical ways to get noise in GLSL:!
!

• Noise texture, pre-generated noise!
!

• Feed shader continuously with numbers from host!
!!

• Truncated trigonometric numbers!

12(56)12(56)

Information Coding / Computer Graphics, ISY, LiTH

Noise texture

Really pre-generated number in any kind of buffer!
!

Easy to do!
!

Static!
!

Can be used for both static things and some
animations (example: snow)

13(56)13(56)

Information Coding / Computer Graphics, ISY, LiTH

Continous feeding

Run random generator on host (CPU)!
!

Feed new random numbers every frame!
!

Much data traffic!
!

Much load on CPU

14(56)14(56)

Information Coding / Computer Graphics, ISY, LiTH

Truncated trigonometric numbers

Smart trick with built-in functions!
!

M is a number >> 1!
!

n = sin(x) * M!
!

r = n - (int)n

15(56)15(56)

Information Coding / Computer Graphics, ISY, LiTH

Plain sin function
!

f := sin(x);!
!

Nothing random about it

16(56)16(56)

Information Coding / Computer Graphics, ISY, LiTH

Multiply by 2, take the fraction part

 f := frac(sin(x) * 2);

17(56)17(56)

Information Coding / Computer Graphics, ISY, LiTH

But if we multiply by more...

 f := frac(sin(x) * 10);

18(56)18(56)

Information Coding / Computer Graphics, ISY, LiTH

...and even more...
!

f := frac(sin(x) * 100);

19(56)19(56)

Information Coding / Computer Graphics, ISY, LiTH

abs() to keep on one side and go high
!

f := frac(sin(x) * 100000);

20(56)20(56)

Information Coding / Computer Graphics, ISY, LiTH

Truncated trigonometric numbers

We now have a non-sequential random number generator!
Only the pixel position is needed!!

!
Just never take steps by π!

21(56)21(56)

Information Coding / Computer Graphics, ISY, LiTH

Random pixel values

Random intensity

22(56)22(56)

Information Coding / Computer Graphics, ISY, LiTH

Random numbers by permutation polynoms
!

Drawback with truncated harmonic functions: The result is
implementation dependent!!

!
Randomness by truncating an integer-based function using

the modulo function.!
!

Stefan suggests!
!

hash = (34x2 + 10x) mod 289!
!

Creates same result on all machines!

23(56)23(56)

Information Coding / Computer Graphics, ISY, LiTH

Permutation polynoms - usage
!

The hash function must be called twice!!
!

hash = (34i2 + 10i) mod 289!
!

hash(hash(x)+y);!
!

This creates a nice randomness:

24(56)24(56)

Information Coding / Computer Graphics, ISY, LiTH

Uses of randomness
!

Like above: Random patterns!
!

Random geometrical patterns!
!

Random movement!
!

Random location!
!

Random geometry!
!

and more...

25(56)25(56)

Information Coding / Computer Graphics, ISY, LiTH

Random geometrical patterns
!

Vary the contents of areas

26(56)26(56)

Information Coding / Computer Graphics, ISY, LiTH

Random movement
!

Vary the speed or direction of moving objects

27(56)27(56)

Information Coding / Computer Graphics, ISY, LiTH

Random location
!

Vary the translation of objects

28(56)28(56)

Information Coding / Computer Graphics, ISY, LiTH

Random geometry
!

Vary parameters of objects

29(56)29(56)

Information Coding / Computer Graphics, ISY, LiTH

And more!
!

Noise functions!!
!

White noise!
!

Colored noise!
!

Perlin noise!
!

Voronoi noise!
!
!

But for the better ones we need splines:

30(56)30(56)

Information Coding / Computer Graphics, ISY, LiTH

Splines

Originally a drafting tool to create a smooth curve!
!

In computer graphics: a curve built from sections, each
described by a 2nd or 3rd degree polynomial.!

!
Very common in non-real-time graphics, both 2D and 3D!!

!
Useful also for real-time.

31(56)

31(56)

Information Coding / Computer Graphics, ISY, LiTH

Applications of splines!
!

• Designing smooth curves (common in 2D illustrations)!
!

• Filter design!
!

• Modelling smooth surfaces!
!

• Representating of smooth surfaces (converted to polygons
in real-time)!

!
• Animation paths!

32(56)32(56)

Information Coding / Computer Graphics, ISY, LiTH

Smoothstep
!

A smooth 0-1 transistion!
!
! ! ! float step(float a, float b, float x)!
! ! ! {!
! ! ! ! ! if (x < a)!
! ! ! ! ! ! return 0;!
! ! ! ! ! if (x > b)!
! ! ! ! ! ! return 1;!
! ! ! ! ! x = (x - a) / (b - a);!
! ! ! ! ! return (x*x*(3 - 2*x));!
! ! ! }

1

a b

A spline defined
by a parametric
representation -
just a function!

!
But how can we

modify this?

33(56)33(56)

Information Coding / Computer Graphics, ISY, LiTH

Parametric representation
x = x(u)!

!
y = y(u)!

!
z = z(u)

u1 ≤ u ≤ u2

A set of functions for each coordinate!

34(56)34(56)

Information Coding / Computer Graphics, ISY, LiTH

Parametric continuity

C0 = continuous position!
= the curves meet

C1 = continuous direction!
= the curves meet at same angle
and same speed (first derivative)

C2 = continuous curvature!
= the curves meet at same bend and

2nd derivative

35(56)35(56)

Information Coding / Computer Graphics, ISY, LiTH

Specification of splines by polynomials!
in multiple sections

x1(u) = ax1u3 + bx1u2 + cx1u + dx1

1 2

y1(u) = ay1u3 + by1u2 + cy1u + dy1

z1(u) = az1u3 + bz1u2 + cz1u + dz1

x2(u) = ax2u3 + bx2u2 + cx2u + dx2

y2(u) = ay2u3 + by2u2 + cy2u + dy2

z2(u) = az2u3 + bz2u2 + cz2u + dz2

Continuity in this point?

36(56)36(56)

Information Coding / Computer Graphics, ISY, LiTH

Parametric continuity
C0:!

x1(u1) = x2(u1)!
y1(u1) = y2(u1)!
z1(u1) = z2(u1)

1 2

u = u1

C1:!
x’1(u1) = x’2(u1)!
y’1(u1) = y’2(u1)!
z’1(u1) = z’2(u1)

C1: 6 equations per vertex, 12
coefficients per section

37(56)37(56)

Information Coding / Computer Graphics, ISY, LiTH

Geometric continuity
G0 = C0 = continuous position!

= the curves meet

G1 = proportional direction!
= the curves meet at same angle

but not same velocity

G2 = proportional curvature!
= the curves meet at same bend but

not same velocity

38(56)38(56)

Information Coding / Computer Graphics, ISY, LiTH

Geometric continuity
G0:!

x1(u1) = x2(u1)!
y1(u1) = y2(u1)!
z1(u1) = z2(u1)

1 2

u = u1

G1:!
x’1(u1) = k*x’2(u1)!
y’1(u1) = k*y’2(u1)!
z’1(u1) = k*z’2(u1)’!

for some k

Essentially one less constraint

39(56)39(56)

Information Coding / Computer Graphics, ISY, LiTH

Smoothstep
!

A smooth 0-1 transistion!
!

Consists of 3 sections, 2 straight ones.!
!

Continuity in the points a and b desirable.

Can you test if
this is G1, C1,

G2 or C2?

1

a b

40(56)40(56)

Information Coding / Computer Graphics, ISY, LiTH

f(x) = 3x2 - 2x3

f'(x) = 6x - 6x2

f''(x) = 6 - 12x

f(0) = 0

f'(0) = 0

f''(0) = 6

f(1) = 1

f'(1) = 0

f''(1) = -6

=> C1 and G1, but not C2 or G2!

41(56)41(56)

Information Coding / Computer Graphics, ISY, LiTH

Smoothstep is constructed by the
constraints!

!
but a common alternative is:

42(56)42(56)

Information Coding / Computer Graphics, ISY, LiTH

Blending functions!
!

Rewrite parametric form to a set of
polynomials, one polynomial for

each control point

43(56)43(56)

Information Coding / Computer Graphics, ISY, LiTH

Bézier curves!
!

Typically use 3 or 4 control points per section

44(56)44(56)

Information Coding / Computer Graphics, ISY, LiTH

Bézier curves!
!

The 4 points are blended together using 4
blending functions

4 blending functions = Cubic Bézier

45(56)45(56)

Information Coding / Computer Graphics, ISY, LiTH

Bézier curves!
!

Blending functions:!
Bernstein polynomials!

!
BEZ0,3 = (1-u)3!

BEZ1,3 = 3u(1-u)2!
BEZ2,3 = 3(1-u)u2!

BEZ3,3 = u3!
!

The sum is 1 for any u

46(56)46(56)

Information Coding / Computer Graphics, ISY, LiTH

BEZ0,3 = (1-u)3!
BEZ1,3 = 3u(1-u)2u!
BEZ2,3 = 3(1-u)u2!

BEZ3,3 = u3

P(u) = P0*(1-u)3 + P1*3u(1-u)2 + P2*3(1-u)u2 + P3*u3

P0

P1

P2

P3

1

1 u

= ∑ Pi * BEZi,3(u)
i = 0

3

47(56)47(56)

Information Coding / Computer Graphics, ISY, LiTH

Fitting together sections!
!

C0/G0 continuity: just fit the points!
!

C1 continuity: Tangents are equal along the edge.!
G1 continuity: Tangents have same direction along the

edge.!
Simple method: Put 3 points in a line, equidistant for C1!

48(56)48(56)

Information Coding / Computer Graphics, ISY, LiTH

Interpolation splines!
!

Passes through all control points.

Control points on the curve.!
e.g. Catmull-Rom!

Not that relevant in this course.

49(56)49(56)

Information Coding / Computer Graphics, ISY, LiTH

Bézier surfaces!
!

A surface is built from a set of Bézier patches!
!

A Bézier patch consists of 16 control points in a
4x4 grid

50(56)50(56)

Information Coding / Computer Graphics, ISY, LiTH

u

v

Bézier surfaces!
!

Blending of the 16 control points as a 2-dimensional
sum!!

P(u,v) = ∑ ∑ pj,k BEZj,3(v) BEZk,3(u)
k=0j=0

3 3

51(56)51(56)

Information Coding / Computer Graphics, ISY, LiTH

Bézier surface example!

52(56)52(56)

Information Coding / Computer Graphics, ISY, LiTH

Fitting together patches!
!

Fit in both u and v direction!
!

Make a 3x3 “joystick” at each corner

53(56)53(56)

Information Coding / Computer Graphics, ISY, LiTH

Drawing splines
Subdivide the spline until the error is small

enough.

u=0
u=1

u=0.5

u=0.25

u=0.75

u=0.375

54(56)54(56)

Information Coding / Computer Graphics, ISY, LiTH

Splines and surfaces in OpenGL!
!

Pre-generated shapes on CPU!
!

Generate by multi-pass GPU processing!
!

Old OpenGL: Evaluators (glMap)!
!

3.2: Geometry shaders!
!

4: Tesselation shaders

55(56)55(56)

Information Coding / Computer Graphics, ISY, LiTH

For this course, consider splines for:!
!

Smooth edges, anti-aliasing, smoothing noise!
!

Constructing and representing shapes!
!

Building smooth surfaces procedurally by Bézier patches!
!

and more!
!

so let's smooth some noise!

56(56)56(56)

Information Coding / Computer Graphics, ISY, LiTH

Value noise
!

Random intensities!
!

White noise!
!

High frequency!
!

Zoomed pixels = random rectanges!
!

Not very useful BUT...

1(25)

1(25)

Information Coding / Computer Graphics, ISY, LiTH

Random numbers

Important source of interesting patterns

Randomness is chaos?

Randomness with structure

Interpolation of noise
!

Can we make smooth functions from noise?!
!

Why do we want smooth functions?!
!

• Curved shapes!
!

• Narrow-banded - easy to control, no unwanted "spikes" in
the frequency spectrum

2(25)2(25)

Information Coding / Computer Graphics, ISY, LiTH

Interpolation of white noise

• Nearest neighbor

• Linear

• Smoothstep

• Cubic spline

3(25)3(25)

Information Coding / Computer Graphics, ISY, LiTH

Interpolation is a reconstruction
!

If it is a sampling, what is the best reconstruction of
the original signal?!

!
For a 1D signal, it can be proven that the ideal

reconstruction is made by a sinc function!
!

sinc(x) = sin(πx)/πx!
!

Thus, the closer to sinc, the better reconstruction!

4(25)4(25)

Information Coding / Computer Graphics, ISY, LiTH

Sinc in the frequency plane
!

Sinc is a step function in the frequency plane = ideal
low-pass filter = best possible smoothing function

Sinc goes to infinity
!

So if we want to use it directly, we must cut off somewhere.

5(25)5(25)

Information Coding / Computer Graphics, ISY, LiTH

1

1 1

1

Piecewise (bi)cubic interpolation Hermite/smoothstep interpolation

(Bi)linear interpolation Nearest neighbor

"Cubic spline"

6(25)6(25)

Information Coding / Computer Graphics, ISY, LiTH

Sum to 1
!

An interpolation function should sum to 1

1

a b

1

a b

1

a b

+ =

7(25)7(25)

Information Coding / Computer Graphics, ISY, LiTH

1 1 1 1

It really works like this!
!

Every pixel affects a limited area.

To calculate a pixel c between a and b, take a and b, multiply by the weight for
each given by the posotion of c and sum

a bc

8(25)8(25)

Information Coding / Computer Graphics, ISY, LiTH

For smoothstep:
!

step(x) + step(1-x) = x2(3 - 2x) + (1-x)2(3-2(1-x))!
!

= 3x2 - 2x3 + 3 - 6x + 3x2 - 2 + 6x - 6x2 + 2x3 = 1

For nearest neighbor and linear interpolation:
!

Trivial! (Right?)

For cubic spline:
!

Not right now please... (Sum over 4 samples)

9(25)9(25)

Information Coding / Computer Graphics, ISY, LiTH

Nearest neighbor
!

Not smooth at all!

10(25)10(25)

Information Coding / Computer Graphics, ISY, LiTH

Bilinear interpolation
!

Better but with visible artifacts

11(25)11(25)

Information Coding / Computer Graphics, ISY, LiTH

Smoothstep
!

"Hermite filter". Smooth but a bit blocky

12(25)12(25)

Information Coding / Computer Graphics, ISY, LiTH

Piecewise bicubic interpolation ("cubic spline")
!

Good approximation of sinc. Close to optimal. Can "overshoot".

13(25)13(25)

Information Coding / Computer Graphics, ISY, LiTH

Gradient noise (Perlin noise)

Random numbers for pixel values is pretty good... but tends
to be "blocky" even with interpolation. High quality

interpolation is good but has some overshoot.!
!

It is also dominated by high frequencies. We will return to
that issue.!

!
A more visually appealing noise: Random gradients.

14(25)14(25)

Information Coding / Computer Graphics, ISY, LiTH

Gradient noise!
!

If the values are used for gradients instead of height,
we get gradient noise. (Perlin noise.)!

!
The function is interpolated to match the gradients. FIXA DEMOS

15(25)15(25)

Information Coding / Computer Graphics, ISY, LiTH

Gradient/Perlin noise

16(25)16(25)

Information Coding / Computer Graphics, ISY, LiTH

vec2 random2(vec2 st)!
{!
 st = vec2(dot(st,vec2(127.1,311.7)),!
 dot(st,vec2(269.5,183.3)));!
 return -1.0 + 2.0*fract(sin(st)*43758.5453123);!
}!
!
// Gradient Noise by Inigo Quilez - iq/2013!
// https://www.shadertoy.com/view/XdXGW8!
float noise(vec2 st)!
{!
 vec2 i = floor(st);!
 vec2 f = fract(st);!
!
 vec2 u = f*f*(3.0-2.0*f);!
!
 return mix(mix(dot(random2(i + vec2(0.0,0.0)), f - vec2(0.0,0.0)),!
 dot(random2(i + vec2(1.0,0.0)), f - vec2(1.0,0.0)), u.x),!
 mix(dot(random2(i + vec2(0.0,1.0)), f - vec2(0.0,1.0)),!
 dot(random2(i + vec2(1.0,1.0)), f - vec2(1.0,1.0)), u.x), u.y);!
}!

Implementation!
!

Not Perlin's but still gradient noise. Brief version from the lab

Spline/smoothstep

Interpolate 4 nearest

fract-based random numbers

Integer and fractional parts

17(25)17(25)

Information Coding / Computer Graphics, ISY, LiTH

Artifacts!
!

Perlin noise is incomplete! It "locks" in certain points, only producing
certain phases of the signal.!

!
I.e. produce only the cosine part of a signal and skipping the sin!!

!
This can be corrected by generating two sets of the signal, with a

proper offset!!
!

Usually ignored.

18(25)18(25)

Information Coding / Computer Graphics, ISY, LiTH

Did this really help?!
!

Perlin vs cubic spline!
!

Cubic splines can overshoot sometimes!
!

Pelin noise rather "undershoots", the function tends to be low.!
!

Perlin clearly better at diagonal shapes

19(25)19(25)

Information Coding / Computer Graphics, ISY, LiTH

Smooth noise = limited bandwidth!
!

Ideally a smooth circle in frequency space!
!

Limited information but can be combined with more.
More about that later.

from Procedural Noise using Sparse Gabor Convolution, Ares Lagae et al

20(25)20(25)

Information Coding / Computer Graphics, ISY, LiTH

Usages of smooth noise!
!

Treshold for interesting shapes!
!

Shape modulation, use an existing shape and
modulate the positions!

!
Combine with other data (including other noise) for

interesting effects

21(25)21(25)

Information Coding / Computer Graphics, ISY, LiTH

Just messing about...

22(25)22(25)

Information Coding / Computer Graphics, ISY, LiTH

Mix with other functions, here sin:

23(25)23(25)

Information Coding / Computer Graphics, ISY, LiTH

Explore the possibilities on lab 1!!
!

• Simple patterns!
• Noise-based patterns!
• GPU implementation!

!
Impress me!

24(25)24(25)

Information Coding / Computer Graphics, ISY, LiTH

Simplex noise!
!

Gradient noise based on triangles/tetrahedrons. Ken
Perlin’s replacement for ”Perlin noise” (gradient noise

on quads).!
!

Advantage: Fewer points affect each output.!
!

Also applied other computing strategies for higher
performance.

But we can do even better:

25(25)25(25)

